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Abstract

Nutrient limitation of phytoplankton growth in aquatic systems is moving towards a higher incidence of P and Si limitation as a

result of increased nitrogen loading, a N:P fertilizer use of 26:1 (molar basis), population growth, and relatively stable silicate

loading. This result will likely alter phytoplankton community composition, and may compromise diatom! zooplankton!fish

food webs.
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1. Introduction

The concentration and elemental ratios of N, P and Si

are known to strongly influence phytoplankton com-

munities (Harris, 1986). Empirical expression of these

limitations are Redfield ratios (atomic ratios of

N:P:Si::16:1:16), which are the stoichiometric require-
ments for balanced growth (Redfield, 1958; Justic� et al.,
1995; Elser et al., 1996). Strong deviations from these

ratios indicate that the nutrient in lesser supply becomes

limiting for phytoplankton growth if a minimal amount

is available. These ratios in rivers are changing as the

loading of N, P and Si is influenced by human activities.

Human activities have such a strong influence, in fact,

that the global variations in the loading of both P and N
from watersheds to oceans can be described satisfacto-

rily using simple land use categories, population densi-

ties and fertilizer use (Caraco, 1993; Howarth et al.,

1996). The present (circa 2000) annual agricultural ap-

plications of N and P are equivalent to 242% and 83%,

respectively, of the annual global riverine fluxes

(Schlessinger, 1991) and are expected to double in the

next 50 years (Table 1). The present consumption of N
fertilizer is 26 times greater than for P, far exceeding the

16:1 ratio required for balanced phytoplankton growth.

The applied N leaks from land to water mostly as the
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highly mobile nitrate ion. Some P may accumulate in

soils (Bennett et al., 2001). As a result, the concentration

of various forms of N and P in fresh waters are

increasing throughout the world (e.g., Cloern, 2001). In

contrast to N and P, however, the global variations in

silicate loading from rivers are predominantly controlled

by its geochemistry, latitude and runoff, although sili-
cate concentrations may be reduced by as much as 50%

due to hydrologic changes in the watershed (Correll

et al., 2000; Humborg et al., 2000). The observed and

predicted global increases in N and P loading, and the

relatively stable or lower Si loadings have, therefore, a

potential to strongly influence dissolved N:P:Si ratios in

rivers, hence aquatic food webs.

We reviewed data for dissolved inorganic nitrogen,
dissolved inorganic phosphate and dissolved silicate

(DSi) in the world�s largest rivers and plot these in a way

that illustrates the present patterns and implies future

nutrient limitations, assuming the predicted increases in

N and P fertilizer use occurs.
2. Methods

The data are described in Turner et al. (in press).

These data are part of a Global Environmental Moni-

toring System (2000) monitoring program for the

world�s largest rivers that includes 44% of the Earth�s
land mass (exclusive of the Antarctic) and half the

Earth�s population. The cumulative average annual

mail to: euturne@su.edu


Table 1

Present and future world fertilizer production (less USSR) as N and P (P as P2O5) as estimated by Tilman et al. (2001), and the equivalent N:P molar

ratios

Year 106 MT fertilizer N:P molar ratio

N P as P2O5

2000 6.2 0.24 25.7

2020 (estimated) 9.6 0.34 28.7

2050 (estimated) 16.9 0.6 28.6
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discharge of these rivers is 20,295 km3 year�1. The data

are from 66 countries and were collected between 1976

and 1995. Some station data represents monitoring for

only 2 years. Differences in the seasonal variations in
nutrient ratios among rivers are not revealed using an-

nual averages. We calculated the mean N:P and Si:N

ratios (molar basis) for the dissolved inorganic constit-

uents and plotted them as a log:log plot. The data were

divided into three groups (or clusters) distinguished by

the average nitrate concentration: <7, >7 and <100, and

>100 lM. The Redfield ratios for N:P and Si:N were

overlaid on this plot, and the four quadrants labeled
according to the potential for N, P, Nþ Si, or SiþP

limitation of phytoplankton growth.
3. Results and discussion

The results indicate that lotic systems are moving

towards lower Si:N and higher N:P ratios as nitrate
concentrations increase (Fig. 1). Both P and Si limita-

tion is favored as nitrate concentrations increase to

above 100 lM. The coastal areas most likely to now

have both P and Si limitation are in northern Europe

and the northern Gulf of Mexico. Through nutrient

limitation on growth, these changes affect phytoplank-

ton dominance, their consumers, and determine alter-
Fig. 1. The molar ratios of DSi and nitrate (Si:N) and dissolved nitrate

and phosphate (N:P) in large rivers of the world. Data are described in

Turner et al. (in press). The Si:N and N:P atomic ratios of 1:1 and 16:1

are indicated by the horizontal and vertical lines, respectively. Nutrient

limitation (assuming sufficient concentration) within each quadrant are

indicated by the lettering.
native community states that may include harmful

phytoplankton blooms (Officer and Ryther, 1980;

Smayda, 1990). For example, diatoms use Si in their

external frustules, and if the Si:N ratio is below 1:1,
diatoms may be replaced by diatoms with less silicified

frustules or with non-diatoms and the diatom! zoo-

plankton! fish (DZF) food webs will be compromised

(Turner et al., 1998; Dortch et al., 2001). These changes

may lead to the formation of alternative, if not harmful,

algal communities (Smayda, 1990; Rocha et al., 2002;

Rousseau et al., 2002). The general pattern of N, P, and

Si loading to estuaries and coastal waters under the
lower nitrate concentrations of the last century indicates

the prevalence of N over P limitation. P and Si limita-

tion appears to be developing as symptoms of eu-

trophication increase concurrent with higher nitrate

loading, including noxious blooms and increasing inci-

dences and severity of hypoxia. In summary, nutrient

management in coastal waters in this century must take

into account not only the effects of increasing amounts
of various nutrients, but also their relative proportions

and, importantly, anticipate future compromises of the

DZF food webs.
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